Абсолютный возраст горных пород и методы его определения.  

Абсолютный возраст горных пород и методы его определения.

Абсолютная геохронология устанавливает возраст г.п. в единицах времени. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лищенных палеонтологических остатков фанерозойских и долембрийских пород.

К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста г.п., в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соотв. И породы).

Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (выше установленный возраст Земли 4,6 млрд. лет не установлен с применением свинцового метода).

Не радиологические методы уступают по точности ядерным.

Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (~ 97 млн. лет).

Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в з.к. в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.

Биологический метод базируется на представлении о сравнительно равномерном развитии орг. мира. Исходный параметр — продолжительность четвертичного периода 1,7 — 2 млн. лет.

Метод подсчета слоев ленточных глин, накапливающихся на периферии тающих ледников. Глинистые осадки откладываются зимой, а песчаные летом и весной, т.о. каждая пара таких слоев результат годичного накопления осадков (последний ледник на Балтийском море прекратил свое движение 12 тысяч лет назад).

Периодизация истории Земли. Геохронологическая шкала.

На основании изменений в развитии органического мира вся история Земли подразделяется на несколько геохронологических этапов (эра период и т.п.), которым соответствуют определенные комплексы отложений (группы, системы и т.п.). В течение этих этапов в различных районах Земли происходили процессы накопления осадков или разрушение ранее образовавшихся отложений. Поэтому полный разрез, включающий все известные системы в каком либо месте не известен ни в одной точке Земли. Общие стратиграфическая и геохронологическая шкала основаны на изучении реально существующих геологических разрезов в различных районах суши Земли лежат особенности состава пород.



Подразделения геохронологической шкалы соответствуют подразделениям стратиграфической шкалы.

геохронологические подразделения стратиграфические подразделения вспомогательные подразделения
эон эонотема
эра эрастема
период система серия (формация)
эпоха отдел свита (толща)
век ярус
время (фаза) зона (горизонт) подсвита, пачка, слои, горизонт

Изучая различные ископаемые остатки, можно проследить развитие животного и растительного мира, по ним же можно проследить и геологическую историю Земли, так как почти каждая из групп организмов несет в себе признаки той среды, в которой она развивалась. Совершенно очевидно, что в более древних слоях погребены и более древние организмы. Установив типы этих организмов, можно закрепить их во времени за определенными комплексами пород. Таким образом, “датой”, закрепляющей возраст пласта, всегда будут являться остатки организмов с характерными для каждого времени формами.

Т2 – мезозойская эра, триасовый период, среднетриасовый отдел;

О1 – палеозойская эра, ордовикский период, нижнеордовикский отдел;

К1 – мезозойская эра, меловой период, нижнемеловой отдел;

С2 – палеозойская эра, каменноугольный период, среднекаменноугольный отдел.

Минералы, физические свойства минералов.

МИНЕРАЛ (от cp.-век. лат. minera — руда * а. mineral; н. Mineral; ф. mineraux; и. minerales) — физически и химически индивидуализированное, как правило, твёрдое тело, относительно однородное по составу и свойствам, возникшее как продукт природных физико-химических процессов, протекающих на поверхности и в глубинах Земли, Луны и других планет, обычно представляющее собой составную часть горных пород, руд и метеоритов.

Определение минералов производится по физическим свойствам, которые обусловлены вещественным составом и строением кристаллической решетки минерала. Это цвет минерала и его порошка, блеск, прозрачность, характер излома и спайности, твердость, удельный вес, магнитность, электропроводность, ковкость, хрупкость, горючесть и запах, вкус, шероховатость, жирность, гигроскопичность. При определении некоторых минералов может быть использовано отношение их к 5-10 % соляной кислоте (карбонаты вскипают).

Цвет минерала

Вопрос о природе цветовой окраски минералов очень сложен. Природа окрасок некоторых минералов еще не определена. В лучшем случае цвет минерала определяется спектральным составом отражаемого минералом светового излучения или обуславливается его внутренними свойствами, каким-либо химическим элементом, входящим в состав минерала, тонко рассеянными включениями других минералов, органического вещества и другими причинами. Красящий пигмент иногда бывает, распространен неравномерно, полосами, давая разноцветные рисунки (например, у агатов).

Цвет некоторых прозрачных минералов меняется в связи с отражением падающего на них света от внутренних поверхностей, трещин или включений. Это явления радужной окраски минералов халькопирита, пирита и иризации – голубые, синие переливы лабрадора.

Некоторые минералы многоцветны (полихромные) и имеют разную окраску по длине кристалла (турмалин, аметист, берилл, гипс, флюорит и др.).

Цвет минерала иногда может быть диагностическим признаком. Например, водные соли меди имеют зеленый или синий цвет. Характер цвета минералов определяется визуально обычно путем сравнения наблюдаемого цвета с общеизвестными понятиями: молочно-белый, светло-зеленый, вишнево-красный и т.п. этот признак не всегда характерен для минералов, так как цвета многих из них сильно варьируют.

Цвет черты

Более надежным диагностическим признаком, чем цвет минерала, является цвет его порошка, оставляемого при царапании испытуемым минералом матовой поверхности фарфоровой пластинки. В ряде случаев совпадает с цветом самого минерала, в других он совсем иной. Так, у киновари окраска минерала и порошка красные, а у латунно-желтого пирита черта зеленовато-черная. Черту дают мягкие и средней твердости минералы, а твердые лишь царапают пластинку и оставляют на ней борозды.

Прозрачность

По своей способности пропускать свет минералы делятся на несколько групп:

Блеск

Блеском называется способность минерала отражать свет. Строгого научного определения понятия блеск не существует. Различают минералы с металлическим блеском как у полированных минералов (пирит, галенит); с полуметаллическим (алмазным, стеклянным, матовым, жирным, восковым, перламутровым, с радужными переливами, шелковистым). Многие физические свойства являются важными диагностическими признаками при определении минералов.

Спайность

Явление спайности у минералов определяется сцеплением частиц внутри кристаллов и обусловлено свойствами их кристаллических решеток. Раскол минералов происходит легче всего параллельно наиболее плотным сеткам кристаллических решеток. Эти сетки наиболее часто и в наилучшем развитии проявляются и во внешнем ограничении кристалла.

Количество плоскостей спайности у разных минералов неодинаково, достигает шести, причем степень совершенства разных плоскостей может быть неодинаковой. Различают следующие виды спайности:

Излом

Характер поверхности, образующейся при разломе (расколе) минерала различный:

1. Ровный излом, если раскол минерала происходит по плоскостям спайности, как, например, у кристаллов слюды, гипса, кальцита.

2. Ступенчатый излом получается при наличии в минерале пересекающихся плоскостей спайности; он может наблюдаться у полевых шпатов, кальцита.

3. Неровный излом характеризуется отсутствием блестящих участков раскола по спайности, как, например, у кварца.

4. Зернистый излом наблюдается у минералов с зернисто-кристаллическим строением (магнетит,хромит).

5. Землистый излом характерен для мягких и сильно пористых минералов (лимонит, боксит).

6. Раковистый – с выпуклыми и вогнутыми участками как у раковин (апатит, опал).

7. Занозистый (игольчатый) – неровная поверхность с ориентированными в одном направлении занозами (селенит, хризотил-асбест, роговая обманка).

8. Крючковатый – на поверхности раскола возникают крючковатые неровности (самородная медь, золото, серебро). Этот вид излома характерен для ковких металлов.

Твердость

Твердость минералов – это степень сопротивляемости их наружной поверхности проникновению другого, более твердого минерала и зависит от типа кристаллической решетки и прочности связей атомов (ионов). Определяют твердость царапанием поверхности минерала ногтем, ножом, стеклом или минералами с известной твердостью из шкалы Мооса, в которую входят 10 минералов с постепенно возрастающей твердостью (в относительных единицах).

Относительность положения минералов по степени возрастания их твердости видна при сравнении: точные определения твердости алмаза (твердость по шкале равна 10) показали, что она более чем в 4000 раз выше, чем у талька (твердость – 1).

Шкала Мооса

Минерал Твердость
Тальк
Гипс
Кальцит
Флюорит
Апатит
Полевой шпат
Кварц
Топаз
Корунд
Алмаз

Главная масса минералов имеет твердость от 2 до 6. Более твердые минералы – это безводные окислы и некоторые силикаты. При определении минерала в породе необходимо убедиться, что испытывается именно минерал, а не порода.

Удельный вес

Удельный вес изменяется от 0,9 до 23 г/см3. У большей части минералов он составляет 2 – 3,4 г/см3, рудные минералы и самородные металлы имеют наивысший удельный вес 5,5 – 23 г/см3. Точный удельный вес определяется в лабораторных условиях, а в обычной практике – «взвешиванием» образца на руке:

— легкие (с удельным весом до 2,5 г/см3) – сера, каменная соль, гипс и другие минералы;

— средние (2,6 – 4 г/см3) – кальцит, кварц, флюорит, топаз, бурый железняк и другие минералы;

— с большим удельным весом (больше 4). Это барит (тяжелый шпат) – с удельным весом 4,3 – 4,7, сернистые руды свинца и меди – удельный вес 4,1 – 7,6 г/см3, самородные элементы – золото, платина, медь, железо и т.д. с удельным весом от 7 до 23 г/см3 (осмистый иридий – 22,7 г/см3, платиновый иридий – 23 г/см3).

Магнитность

Свойство минералов притягиваться магнитом или отклонять магнитную стрелку компаса является одним из диагностических признаков. Сильно магнитными минералами являются магнетит и пирротин.

Ковкость и хрупкость

Ковкими являются минералы, изменяющие свою форму при ударе молотком, но не рассыпающиеся (медь, золото, платина, серебро). Хрупкие – рассыпаются при ударе на мелкие кусочки.

Электропроводность

Электропроводность минералов – это способность минералов проводить электрический ток под действием электрического поля. В противном случае минералы относятся к диэлектрикам, т.е. не проводящим ток.

Горючесть и запах

Некоторые минералы загораются от спички и создают характерные запахи (сера – сернистого газа, янтарь – ароматический запах, озокерит – удушливый запах угарного газа). Запах сероводорода появляется при ударе по марказиту, пириту, при растирании кварца, флюорита, кальцита. При трении кусочков фосфорита друг о друга появляется запах жженой кости. Каолинит при смачивании приобретает запах печки.

Вкус

Вкусовые ощущения вызывают только хорошо растворимые в воде минералы (галит – соленый вкус, сильвин – горько соленый).

Шероховатость и жирность

Жирными, слегка мажущими являются тальк, каолинит, шероховатыми – боксит, мел.

Гигроскопичность

Это свойство минералов увлажняться, притягивая молекулы воды из окружающей среды, в том числе из воздуха (карналлит).

Некоторые минералы реагируют с кислотами. Для опознавания минералов, которые по химическому составу являются солями угольной кислоты, удобно пользоваться реакцией вскипания их со слабой (5 – 10%) соляной кислотой.




177554824.html
178554824.html
179554824.html
180554824.html
181554824.html
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
Учебная работа
    PR.RU™