АЦП поразрядного уравновешивания (последовательных приближений)

Является наиболее распространенным вариантом последовательных АЦП.

В основе работы этого класса преобразователей лежит принцип дихотомии, т.е последовательного сравнения измеряемой величины с 1/2, 1/4, 1/8 и т.д. от возможного максимального значения ее. Это позволяет для N-разрядного АЦП последовательного приближения выполнить весь процесс преобразования за N последовательных шагов (итераций) вместо 2N-1 при использовании последовательного счета и получить существенный выигрыш в быстродействии. Так, уже при N=10 этот выигрыш достигает 100 раз и позволяет получить с помощью таких АЦП до 105...106 преобразований в секунду. В то же время статическая погрешность этого типа преобразователей, определяемая в основном используемым в нем ЦАП, может быть очень малой, что позволяет реализовать разрешающую способность до 18 двоичных разрядов при частоте выборок до 200 кГц.

Рассмотрим принципы построения и работы АЦП последовательного приближения на примере классической структуры (рис.) 4-разрядного преобразователя, состоящего из трех основных узлов: компаратора, регистра последовательного приближения (РПП) и ЦАП.

После подачи команды "Пуск" с приходом первого тактового импульса РПП принудительно задает на вход ЦАП код, равный половине его шкалы (для 4-разрядного ЦАП это 10002=810).

После четырех подобных выравнивающих шагов в регистре последовательного приближения оказывается двоичное число, из которого после цифро-аналогового преобразования получается напряжение, соответствующее Uвх с точностью до 1 ЕМР. Выходное число может быть считано с РПП в виде параллельного двоичного кода по N линиям. Кроме того, в процессе преобразования на выходе компаратора, формируется выходное число в виде последовательного кода старшими разрядами вперед.

Быстродействие АЦП данного типа определяется суммой времени установления tуст ЦАП до установившегося значения с погрешностью, не превышающей 0,5 ЕМР, времени переключения компаратора tк и задержки распространения сигнала в регистре последовательного приближения tз. Сумма tк + tз является величиной постоянной, а tуст уменьшается с уменьшением веса разряда. Следовательно для определения младших разрядов может быть использована более высокая тактовая частота.

При работе без устройства выборки-хранения апертурное время равно времени между началом и фактическим окончанием преобразования, которое так же, как и у АЦП последовательного счета, по сути зависит от входного сигнала, т.е. является переменным. Возникающие при этом апертурные погрешности носят также нелинейный характер. Поэтому для эффективного использования АЦП последовательного приближения, между его входом и источником преобразуемого сигнала следует включать УВХ. Большинство выпускаемых в настоящее время ИМС АЦП последовательного приближения, имеет встроенные устройства выборки-хранения или, чаще, устройства слежения-хранения, управляемые сигналом запуска АЦП. Устройство слежения-хранения отличается тем, что постоянно находится в режиме выборки, переходя в режим хранения только на время преобразования сигнала.



Данный класс АЦП занимает промежуточное положение по быстродействию, стоимости и разрешающей способности между последовательно-параллельными и интегрирующими АЦП и находит широкое применение в системах управления, контроля и цифровой обработки сигналов.

АЦП двойного интегрирования

Способ двойного интегрирования позволяет хорошо подавлять сетевые помехи. Работа его заключается в следующем. Счетчик запускается от генератора тактовых импульсов в момент поступления на интегратор входного сигнала Uвх, из которого за время интегрирования делается выборка. За время выборки напряжение на выходе интегратора Uвых и увеличивается. В момент tи прямое интегрирование заканчивается, входной сигнал от интегратора отключается и к его суммирующей точке подключается эталонный резистор. От времени tи до моментов t1 . . . t3 продолжается разряд конденсатора интегратора с постоянной скоростью. Интервалы времени от tи до нулевых отметок (t1 . . . t3) пропорциональны уровню входного сигнала. Существенным преимуществом преобразователя является простота компенсации наводок сети промышленного питания.

АЦП двойного интегрирования относится к наиболее медленно работающим преобразователям. Однако, высокая точность, низкий уровень шумов и низкая стоимость делают их незаменимыми для применения в щитовых приборах, мультиметрах, цифровых термометрах и т.п. Этому способствует также то, что результаты преобразования в интегрирующих АЦП часто представляются в десятичном коде или же в удобном виде для представления цифр десятичной системы счисления.

Дельта-сигма АЦП

Сигма-дельта АЦП состоит из двух частей: модулятор и цифровой ФНЧ.

Модулятор преобразует входное напряжение Uвх в последовательность импульсов, а ФНЧ формирует выходной код.

Uвх подается на вычитатель, где из него вычитается опорное напряжение +Uоп или -Uоп, в зависимости от того, был ли превышен порог компаратора на предыдущем шаге.

Интегратор формирует пилообразное напряжение, наклон пилы зависит от напряжения на выходе вычитателя. Как только пила пересекает уровень нуля, срабатывает компаратор и на следующем такте пила развернется в направлении нуля. Вообще говоря, уровень компаратора может быть любым, главное чтобы пила не подходила близко к уровням Uоп.

С выхода компаратора сигнал поступает на тактируемый триггер. Частота тактирования определяет время шага работы модулятора и минимальное время «1» или «0» на выходе модулятора. В конечном итоге частота определяет время преобразования.

Далее сигнал поступает на аналоговый ключ, который коммутируя +Uоп и –Uоп замыкает обратную связь.

На вход ФНЧ поступает последовательность нулей и единиц, при этом количество «1» в единицу времени пропорционально Uвх. Так при Uвх=-Uоп будут одни нули, при Uвх = +Uоп – одни единицы. Нулевому уровню Uвх будет соответствовать равное количество нулей и единиц. Остается только их сосчитать и вычесть уровень нуля равный (+Uоп – -Uоп)/2.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.




317554824.html
318554824.html
319554824.html
320554824.html
321554824.html
    PR.RU™