Адаптация кровообращения и дыхания к уровню энергообмена

Всякое изменение энергообмена в организме должно обеспечиваться транспортными системами кровообращения и дыхания, поскольку для аэробного обмена веществ справедливы следующие соотношения:

Рис.4. Энергообмен человеческого организма. (E - выделение энергии, Eх - энергия химических связей, выделяемая при распаде веществ, Eм - механическая энергия (производимая мускулатурой), Em - тепловая энергия, Eо - энергия, накопленная в органических структурах и энергетических субстанциях).


т.е. количество преобразованной в единицу времени энергии (dE/dt) пропорционально потреблению кислорода за это же время (dVO2 /dt) и протекающему за это время по системе кровообращения объему крови (dVкрови/dt). Для последнего в качестве стандартной единицы применяется минутный объем сердца (МОС).
Изменение МОС означает более быстрое наполнение легких и требует в свою очередь повышения альвеолярной вентиляции легких. Можно было бы сказать и так: кровообращение и дыхание делают то, чего хочет обмен веществ. Впрочем это не всегда справедливо , так как обе системы обеспечивают также и иные функции (терморегуляция, транспорт веществ, водообмен, речь и т.д.)

Кровообращение

Количественной характеристикой мощности кровобращения является минутный объем сердца (МОС), составляющий в состоянии покоя около 5 л/мин. Поскольку измерять его достаточно сложно и при изменении мощности кровообращения ударный объем сердца меняется незначительно, то для простоты чаще регистрируется частота сердечных сокращений (ЧСС). Она пропорциональна МОС и может изменятся под влиянием симпатических или блуждающего нервов. Однако не всегда только энергообмен обусловливает изменение частоты сердечных сокращений, за это могут быть ответственны и другие влияния на блуждающие и симпатические нервы (изменение смеси дыхательных газов, обмен веществ, стресс и др.). Поэтому изменение ЧСС можно принять в качестве единицы измерения энергообмена только при строгом учете соответствующих пограничных условий. Поскольку движущей силой кровотока является разница артериального и венозного давлений, то второй причиной повышения МОС будет повышение артериального давления. Диастолическое давление при этом меняется мало, так как благодаря расслаблению мышечных волокон стенок конечных магистральных сосудов падает общее периферическое сопротивление (ОПС), то есть тонус стенок сосудов, и прирост ОПС компенсируется общей симпатической активацией остальных сосудов. Таким образом, повышается преимущественно артериальное систолическое давление, вместе с ним и среднединамическое давление, а также амплитуда кровяного давления или пульсовое давление. (Под амплитудой кровяного давления в клинической медицине понимается разница между величинами систолического и диастолического артериального давления. Содержание этого понятия не совпадает с математическим понятием амплитуды !). Таким образом, повышение минутного объема сердца, вызванного ростом энергообмена, находит свое выражение в росте ЧСС, систолического и, соответственно, среднединамического артериального давления.
В табл. 10 даны частоты сердечных сокращений при исполнении различных асан. При каждой асане происходит небольшое повышение ЧСС, которое соответствует адаптации кровообращения к легкой нагрузке. Ее значения теоретически должны быть пропорциональны значениям энергообмена, данным в той же последовательности в разделе 3.4.1. В том факте, что это не так, отражается индивидуально различное усилие соответственно разному уровню адаптации. В рамках таких небольших различий эти отклонения не должны вызывать недоумения, к тому же речь идет о малом числе испытуемых. Более представительные статистические данные по этому вопросу пока отсутствуют.
Рост артериального давления, отмеченный при некоторых асанах (табл.7), не указывает на какое-либо существенное изменение пульсового давления (амплитуды артериального давления). В отдельных случаях при стойке на голове отмечается даже его снижение (Rao 1963, Kuvalayananda 1926). Вследствие этого одновременное повышение систолического и диастолического давления можно свести исключительно к влиянию асан на гидростатическое давление (см.раздел 5.2.). Только в работе Gaertner'а, в которой изучалась 50-минутная сиршасана, сообщается о возрастании пульсового давления (Gaertner и др. 1965). Таким образом, результаты адаптации кровообращения к повышенному энергообмену преимущественно столь незначительны, что кроме отчетливого прироста ЧСС каких-либо более существенных изменений кровяного давления не наступает.



Таблица 10.Частота сердечных сокращений при некоторых асанах. [По-видимому, средние значения 14 испытуемых; по Gopal, цит. по: Funderburk (1977), число испытуемых не приводится].

Асана ЧСС [мин-1]
Шавасана
Йога-мудра
Випаритакарани
Сарвангасана
Сиддхасана
Сиршасана
Ардхаматсиендрасана


Дыхание

Адекватная характеристика мощности дыхания может быть дана посредством минутного объема дыхания (МОД) - количества воздуха, потребленного за 1 мин. Обычно он составляет 7 л/мин. МОД определяется через дыхательный объем (500мл) и частоту дыхания (14/мин). Эти значения справедливы для состояния покоя человека весом в 70 кг. Если дыхательный объем не изменяется, что при нормальных условиях едва ли возможно, частота дыхания (ЧД) могла бы служить для характеристики дыхания (ср.табл. 14). Таблица 11 (по Rao 1968) дает МОД, ЧД и ДО при стойке на голове в сравнении с положением лежа и стоя. В частности, по росту МОД заметна адаптация дыхания к повышению энергетических затрат. В табл. 12 ряд асан дан по возрастанию величины ЧД. Дыхательный объем измерялся здесь по расширению грудной клетки в см, и поэтому не может использоваться для количественной оценки МОД, а дает только относительную качественную оценку.

Таблица 11. Частота дыхания (ЧД), дыхательный объем (ДО) и минутный объем дыхания (МОД) соответственно после 5-минутного положения стоя и 5-минутной стойки на голове в сравнении с положением лежа на спине; средние значения 6 испытуемых (по: Rao 1968)

Параметр Лежа перед асаной Стоя Стойка на голове Лежа после асаны
ЧД [мин-1] 16,3 17,8 17,5 17,7
ДО [мл]
МОД [л/мин] 8,0 10,1 12,8 9,1

Полученные Dhanaraj (1974) и Wenger (1961) частоты дыхания при шавасане в сравнении с медитацией (см.гл.5), естественно, не обнаруживают адаптации к энергетическим затратам.
К оценке параметров дыхания необходимо подходить еще более осторожно, чем при оценке кровообращения, так как многие асаны вызывают сильные деформации грудной клетки, которые через проприоцептивную регуляцию могут воздействовать также и на форму дыхания (см. гл.4). Систематические исследования по данному вопросу до сих пор не проводились. Здесь следует еще раз обратить внимание на весьма примечательное высказывание учителей йоги о дыхании во время асан: дыхание должно быть спокойным и расслабленным - равномерное дыхание соответствует равномерному течению мыслей.

Таблица 12. Частоты дыхания (ЧД) при выполнении различных асан у групп практикующих (I) и непрактикующих (II), йогу, численность которых Funderburk к сожалению не сообщает (по Gopal, цит. по Funderburk 1977)

Асана ЧД I (мин-1) ЧД II (мин-1)
Шавасана 8,2 22,3
Йога-мудра 9,6 24,6
Сиддхасана 10,1 22,9
Сиршасана 13,7 27,2
Сарвангасана 15,8 28,5
Випаритакарани 16,1 31,9
Ардхаматсиендрасана 17,9 30,2




371554824.html
372554824.html
373554824.html
374554824.html
37554824.html
    PR.RU™